Applications of noble-gas chemistry to the synthesis of highvalent metal oxofluoride species W.J. Casteel, Jr., N. LeBlond, P.E. Lock, H.P.A. Mercier, D.M. MacLeod, G.J. Schrobilgen * Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada Keywords: Syntheses; High-valent oxofluoride species; NMR spectroscopy; X-Ray diffraction; Oxide/fluoride metathesis; Oxidative elimination New high-valent metal oxofluoride species are described which rely exclusively, or in part, upon noblegas fluorides for their geneses. Clean routes to the preparation of a number of high-valent metal oxofluoro N(CH₃),*TcO₂F,* in CH₃CN Fig. 1. ¹⁹F NMR spectrum (a) and ⁹⁹Tc NMR spectrum (b) of $[N(CH_3)_4]^+[TcO_2F_4]^-$ in CH_3CN solvent. Fig. 2. ORTEP diagram of Cs+[Re₃O₆F₁₀]-. Fig. 3. ORTEP diagram of $[Os_2O_4F_7]^+[Sb_2F_{11}]^-$. species are afforded by the strong oxidant fluorinators XeF_6 and KrF_2 . Reaction in anhydrous HF with a metal oxide or oxofluoride in which the metal is already in its highest oxidation state in anhydrous HF leads to fluorination by means of oxide/fluoride metatheses in the case of XeF_6 or by oxidative elimination of O_2 in the case of KrF_2 . Fluoride/oxide metathesis reactions between M_2O_7 (M = Tc or Re) and XeF_6 afford high-yield and high-purity syntheses of TcO_2F_3 (the second ^{*} Corresponding author. example of a Tc^{VII} oxofluoride) and ReO₂F₃ as an improved synthesis. The crystal structure of TcO₂F₃ has been described recently and consists of an open-chain, fluorine-bridged structure in which the fluorine bridges are *trans* to the oxygens and the oxygens are *cis* to one another [1]. Fluorination of TcO₂F₃ with KrF₂ has provided preliminary evidence for TcOF₅. The fluoride ion donor/acceptor properties of TcO_2F_3 and ReO_2F_3 have been explored leading to the syntheses of the novel anions cis- $[TcO_2F_4]^-$ ($[XeF_5]^+$, Li^+ , Cs^+ and $[N(CH_3)_4]^+$ salts; see NMR spectra, Fig. 1), $[Re_3O_6F_{10}]^-$ (Cs^+ salt; Fig. 2) and a fuller characterization of the previously known [2] cis- $[ReO_2F_4]^-$ anion (Li^+ , Na^+ , $[N(CH_3)_4]^+$ salts). The $[TcO_2F_2]^+$ and $[ReO_2F_2]^+$ cations have been stabilized as their $[AsF_6]^-$ and $[SbF_6]^-$ salts, and characterized in solution by ^{19}F and ^{99}Tc NMR spectroscopy and in the solid state by vibrational spectroscopy. The synthesis from pure ReO₂F₃ by reaction with a stoichiometric amount of B(OTeF₅)₃ has afforded ReO₂(OTeF₅)₃ and its full characterization by low temperature ¹⁹F and ¹²⁵Te NMR spectroscopy. The structure is consistent with a trigonal bipyramidal arrangement of ligand atoms in which the oxygen atoms occupy the equatorial plane. At higher temperatures, the OTeF₅ groups undergo intramolecular exchange by means of a pseudo-rotation mechanism. The interaction of ReO₂(OTeF₅)₃ with a stoichiometric amount of [N(CH₃)₄]⁺[OTeF₅]⁻ yields the *cis*-[ReO₂(OTeF₅)₄]⁻ anion which has been characterized by ¹⁹F and ¹²⁵Te NMR spectroscopy and Raman spectroscopy. Recently, cis-OsO₂F₄ has been synthesized in HF solvent by the reaction of KrF₂ with OsO₄ [3] and fully characterized [4]. In the present work, cis-OsO₂F₄ has been shown to behave as a fluoride-ion donor towards AsF₅ and SbF₅ in HF solvent, leading to the isolation and characterization of $[Os_2O_4F_7]^+[Sb_2F_{11}]^-$ by X-ray crystallography (Fig. 3). The $[Os_2O_4F_7]^+$ cation is a cis-dioxo structure in which the bridging fluorine is trans to the oxygen atoms. ## References - [1] H.P.A. Mercier and G.J. Schrobilgen, *Inorg. Chem.*, 32 (1993) 145. - [2] W. Kuhlmann and W. Sawodny, J. Fluorine Chem., 9 (1977) 341. - [3] (a) R. Bougon, J. Fluorine Chem., 53 (1991) 419; (b) K.O. Christe and R. Bougon, J. Chem. Soc., Chem. Commun., (1992) 1056 - [4] (a) R. Bougon, B. Buu and K. Seppelt, Chem. Ber., 126 (1993) 1331; (b) K.O. Christe, D.A. Dixon, H.G. Mack, H. Oberhammer, A. Pagelot, J.C.P. Sanders and G.J. Schrobilgen, J. Am. Chem. Soc., 115 (1993) 11 279.